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Abstract

Defining touch temperature limits for skin contact with both hot and cold objects is important to

prevent pain and skin damage, which may affect task performance or become a safety concern. Pain

and skin damage depend on the skin temperature during contact, which depends on the contact

thermal conductance, the object's initial temperature, and its material properties. However, previous

spacecraft standards have incorrectly defined touch temperature limits in terms of a single object

temperature value for all materials, or have provided limited material-specific values which do not cover

the gamut of likely designs. A new approach has been developed for updated NASA standards, which

defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with

hot and cold objects. The authors have developed an analytical verification method for safe hot and

cold object temperatures for contact times from 1 second to infinity.

Introduction

Correctly defining touch temperature limits for spacecraft equipment protects the crew from pain and

physical harm while optimizing crew and system performance. If the touch temperature limits are set

too conservatively, the use of operational constraints, such as wearing gloves, may be mandated

unnecessarily— increasing the time required to perform tasks. Alternately, thermal coverings may be

mandated for powered equipment that would impede their heat transfer to the cabin — decreasing their

reliability by causing them to run hotter than is truly required. If the touch temperature limits are set

too liberally, the crew may experience pain or skin damage while handling equipment. Therefore, it is

important that spacecraft touch temperature limits be defined correctly.

This paper describes the present NASA spacecraft touch temperature limits for the Space Shuttle and

the International Space Station, and the limitations and issues with these specifications as written. A

new methodology for defining touch temperature limits is presented that includes more recent

publications in the literature and that incorporates the physiological effects of touching hot and cold

objects. Finally, a new standard for spacecraft touch temperature limits is defined.

Current Spacecraft Touch Temperature Limits

NASA's original hot touch temperature limits were based on human testing with heated aluminum

plates. The data showed that pain onset occurred at an aluminum plate temperature of 45°C (113°F).



This temperature was established as the limit for all materials for any contact time from zero to infinity

and was the standard until 1995, when two changes were made [1];

1. Material—specific hot temperature limits were established for times between 1 and 10 seconds.

2. A cold temperature limit of -18°C (0°F) for unlimited contact with all materials was added.

The new hot temperature limits were based on Air Standard 61-39 [2], which in turn was based on Stoll,

Chianta, and Piergallini's [3] curve-fit equation to their human testing data. While Stoll et al.'s original

data set included touch temperature data up to only 4 seconds, they suggested that the use of their

non-physics based curve-fit equation be extended to 5 seconds. However, in the Air Standard it was

suggested that the equation could be reliably extended to 10 seconds, which is not appropriate for non-

physics-based correlations. Additionally, the current NASA standards can be interpreted to

inappropriately allow the use of the equation for indefinite durations.

NASA's cold touch temperature limit of -18°C (0°F) does not trace to any studies or data, and appears to

go beyond anecdotal limits for pain'. An updated hot and cold touch temperature standard, backed by

data, was needed.

The current work results from an effort to;

1. Correct the misinterpretation of Stoll et al.'s work for hot touch temperature limit contact

duration.

2. Extend the timescale for material-specific hot touch temperature limits beyond the 5 seconds of

Stoll et al.'s correlation - to infinite times if possible.

3. Develop a realistic touch temperature limit for cold objects.

Hot Touch Temperature Limits

When defining touch temperature limits, the question arises as to whether pain or skin damage should

be the limiting factor. The danger of allowing skin damage is that it may affect a person's ability to use

the affected area, including hands or fingers, which may lead to decreased performance in critical areas

such as controlling a vehicle. In fact, the governing International Standard Organization (ISO) standard

[4] for human contact with hot surfaces provides a collection of temperature threshold values and

assessment methods for skin burns during contact with hot objects.

NASA holds to a higher standard, using the onset of pain as the crew protection limit. Since the ISO

Standard [4] does not address the onset of pain, primary sources must be investigated to develop a

useable standard. Several experiments beside Stoll et al. have investigated human tolerance to heat

pain during contact with the skin. Research by Greene et al. [5] showed that the heat pain threshold is

' Anyone who has tried to select their desired drink from the bottom of an ice-filled cooler has observed that pain
results after much less than a minute of immersion in 0°C (32°F) ice water.



reached at 43YC (110.7°F) skin temperature. Lloyd-Smith and Mendelssohn [6] found the pain

threshold to be 44.6°C (112.3°F). Defrin et al. [7] investigated heat pain threshold across the body and

found the lowest level in the chest (42°C or 107.6°F), the highest in the foot (44.5°C or 112.1°F) and the

hand was 43.8°C (110.8°F).

Hatton and Halfdanarson [8], developed a physically based model that matched Stoll et al.'s results.

They found that Stoll et al.'s data for the onset of pain could be well correlated using a one-dimensional

semi-infinite model with a constant finite contact conductance. The point where the calculated

dermal/epidermal interface (taken as 0.25 mm or 0.010 inches below the surface) reached 44°C

(111.2°F) matched very well with the reported onset of pain. The epidermal/dermal interface was

chosen as the critical location because only the dermis is sensitive to pain. The epidermis is insensitive

to temperature owing to its lack of pain receptors.

Given that the data on pain converge around the same value, the 44°C (111.2°F) epidermal/dermal

interface temperature derived by Hatton and Halfdanarson from Stoll et al.'s data should be used as the

upper limit for contact with hot objects. A subtle, but important distinction when defining touch

temperature limits is that they should be based on the epidermal/dermal interface temperature at pain

onset. Some previous standards have incorrectly defined the allowable object temperature as the used

the skin temperature limit, which is overly conservative.

Verifying that objects meet touch temperature limits can be performed by test or analysis. However,

exploring the limits of pain or skin damage cannot be easily accomplished with live human subjects.

Physical models of human skin may be used to evaluate whether skin temperature would exceed given

limits when in contact with an object. An example of a physical model is the thermesthesiometer probe,

developed by Marzetta [9]. The core of the probe is maintained at a temperature of 33°C (91.4°F). The

probe is brought into contact with the hot surface and its temperature response is assessed.

Other possible physical models include dead animal or human skin, and artificial skin, where a

thermocouple can be placed subcutaneously to measure the epidermis/dermis interface temperature

during contact with a hot object.

A more straightforward and convenient method for verifying touch temperature limits is by analysis.

One validation method is Stoll et al.'s curve fits to their human test data. The pain threshold equation

for times between 1 and 5 seconds is;

Tobject = YI [(kPc)object + 31.5] + 41

(1)

where Tob;ect = object temperature in (°C)

Yl=antiloglo [YII(a1)+log(YIII) ]

YI I=1.094 t-0.184



YI I1=0.490 t-0.412

and	 kpc is the thermal inertia of the hot material in ca 1 2/cm4 °C2 sec

k = thermal conductivity

p = density

c = specific heat

a1 = epidermal thickness in mm, (Stoll et al. reported an average of 0.25 mm — 0.010 inch)

t = time of exposure in seconds (limited to between 1 and 5 seconds)

This method allows for evaluation of any material with known thermal properties. However, for times

greater than 5 seconds, Stoll et al.'s correlation is not valid and another verification method must be

used.

The range of the material-specific hot touch temperature limits can be extended with a methodology

based on the work of Hatton and Halfdanarson [8]. They found that Stoll et al.'s data for the onset of

pain was well correlated using a one-dimensional semi-infinite model (Eq. 2 and 3) with a constant finite

contact conductance2;

Ir 	 object	 object	 r	 l	 r
TE/D — LTskin(0 ) +Tobject 

(
0 )]	 * erfcl	 X̂

J
—exp^h 2 X +h 2a skin t ^erfc l	 —	 +hz asking

k object	 ahot +k skin	 askin	 l2Vaskint	 l2^Va's,nt

( 2)

h = 
H(k object	 ahot +k skin	 askin )

2
kobjectkskin Iy a^	

(3)

where H is the contact conductance, a is the thermal diffusivity (k/pc), and X is the distance from the

interface.

Hatton and Halfdanarson found that using the following parameters with this model yielded an excellent

correlation with Stoll et al.'s test data for the onset of pain:

•	 Initial skin temperature of 32.5°C (90.5°F).

• Skin thermal conductivity of thermal conductivity of 0.54 W/m •K (0.312 BTU/hr ft °F).

•	 Skin thermal diffusivity of 1.3x10 -7 m 2/s (1.4x10-6ft2/s).

• Contact conductance of 1000 W/m 2 K (173.1 BTU/hr ft' °F).

•	 Pain threshold of 44°C (111.2°F) at the dermal/epidermal interface.

• Dermal/epidermal interface 0.25 mm (0.010 inches) below the surface.

2 Which takes into account the imperfect contact of the fingertips with the hot surface.
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Hatton and Halfdanarson's methodology was extended in the present work by building a transient one-

dimensional heat conduction model for two thermally thick objects. The Fortran model used an implicit

finite difference technique. The objects were at different uniform initial temperatures and were

coupled through the transient using a constant contact conductance.

Using Hatton and Halfdanarson's recommended initial condition, physical constants, contact

conductance, and definition for the onset of pain, the model was run for materials that spanned the

range from aluminum to Masonite to define the time and material-specific allowable temperature

curves. The time where the epidermal/dermal interface temperature reached 44°C (111.2°F) was taken

as the limit and calculated over a range of initial hot object temperatures. The results took the form of

Tobject — a(k p C)-1/2
object + b
	

(4)

where Tobject is the allowable object temperature in °C, kpc is in units of cal l/cm4 °C2 sec, and a and b are

variables that are functions of the time of contact.

The values of a and b for a range of contact times are shown in Table 1. The table also contains the

equivalent constants for Stoll et al.'s curve fit for times from 1 to 5 seconds.

Table 1 — Hot Case Constants

contact	
a

time (s)
b

1	 0.920 69.97

2	 0.641 61.19

3	 0.521 57.42

4	 0.451 55.20

5	 0.403 53.70

10	 0.475 50.07

30	 0.459 46.61

60	 0.446 45.90
-	 0.422 44.87

In the calculations, 600 seconds was taken to represent unlimited contact time (t= —)

The results of the Fortran program along with Stoll et al.'s correlation between 1 and 5 seconds is shown

in Figure 1.
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Figure 1 — Hot touch Temperature Limits

Close examination of Figure 1 shows that the curves for 5 seconds (from Stoll et al.) and 10 seconds

(from the present work) intersect at a value of inverse square root thermal inertia of 50 cm' °C sec1/2/cal.

This is caused by the fact that the 5 second and 10 second curves were derived using test data and

analysis, respectively. It is recommended that the test data be given precedence and the 10 second

curve be considered valid only for (k PC)-112< 50 cm 2 °C sec1/2/cal.

The left hand termini of the lines in the figure correspond to the properties of aluminum. Since none of

the lines dip below 45°C (113°F), a material temperature limit of 45°C (113°F) can be used as a first

screening point for all commonly used materials. That is, if the temperature of any commonly used

material is lower than 45°C (113°F), it will meet the hot touchtemperature requirements for all contact

times.

Cold Touch Temperature Limits

The origin of NASA's cold temperature limit of -18°C (0°F) for any material for unlimited contact time is

unclear, and upon reviewing the literature it was found that this limit is likely to cause both pain and

skin damage. Research on human tolerance to cold has shown that onset of pain occurs at 15°C (59°F)

skin temperature (Havenith et al. [10]), numbness occurs at 7°C (44.6°F) (Provins and Morton [11]) and

risk of frostbite is risked at 0°C (327) (Havenith et al. [10]).

As discussed previously, the pain threshold, rather than the damage threshold, should be the limiting

factor to maintain performance while using the affected area. Staying above the numbness threshold is

also important because numbness may impact performance and can mask skin damage.

The lower skin temperature limit for the standard was defined using the results of human testing of

space suit glove thermal performance. The tests showed that a hand skin temperature of 10°C (50°F)

was tolerable [12], so this was taken as the skin temperature limit. This limit maximizes the allowable
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material temperature envelope while avoiding the risk of numbness. Similar to the hot touch

temperature case, the most straightforward and convenient method of verification is by analysis. There

is an ISO standard for cold temperatures, ISO-13732-3 [13], but it has several limitations, primarily the

limited number of materials - Aluminum, steel, and nylon'. .

However, the data of Geng et al. [14] that was the basis of ISO-13732-3 can be used to develop a cold

temperature verification method. Geng et al. performed experiments analogous to Stoll et al.'s study,

having subjects grasp aluminum, stainless steel, Nylon and wood test articles that had been cooled to

between 2 and -40°C (35.6 to -40°F). Geng et al. reported the time required for the subjects' skin

temperature (as measured by an externally attached thermocouple) to reach 15°C (597), 7°C (44.67) ,

and 0°C (327). These temperatures correspond to the previously noted definitions for pain, numbness

and skin damage, respectively.

Geng et al.'s data was used to obtain the time and material-specific cold case curves for the chosen skin

temperature limit of 10°C (50°F). First, the median data for the both the 15 and 7°C (59 and 44.6°F)

cases were curve fit as time to the critical temperature for aluminum, stainless steel and Nylon 4 vs. the

difference between the initial skin temperature s and the initial object temperature-. The resulting curve

fits (Figure 2) allowed calculation of the allowable initial temperature for each of the three materials

given a contact time and a target skin temperature of 15 or 7°C (59 and 44.6°F) .

Allowable Cold Temperature 15°C Allowable Cold Temperature 7°C
100 100

V U Y = 1 06.440.13]

=42.44x a.s2s	 y = ss.s94» -0.^6g M
y=51.2$2x'111

a	
^

♦ 	 tAl v ♦ 	 tAl
n 	 tSS ^ n tS5

e	 tPlylon 3 A,	 tNYlon
y = 3$.574x- "1a Power(tAl) Ry y = 52.649x-1.117 Power(tAl)

a
a Power(tSS)

n
E Pow er(tSS)

10 Power(Mylon) 10 Power(tNylon)
0.1	 1	 16	 100 1	 10	 100	 1000

time (s) time (s)

Figure 2 — Curve Fits to Geng et al.'s Data

Using these curve fits, the allowable initial temperature for contact times of 1, 2, 3, 4, 5, 10, 30, 60, and

600 6 seconds were obtained for each of the three materials. Where the calculated initial temperature

3 Stone and wood are also included, but the specific types of stone and wood are not identified.

4 The wood data was excluded for two reasons: wood is not isentropic as are the other materials and Geng et al's

wood data is not self consistent.

5 Taken as 32.5°C (90.5°F), the same as was measured by Stoll et al.

6 Taken as infinite time.
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was higher than the critical temperature of 15 or 7°C (59 or 44.6°F), the initial object temperature was

taken as the critical temperature because that is the true physical limit. The resulting tables of initial

temperature vs. time to 15 and 7°C (59 and 44.6°F) were then linearly interpolated for each material to

yield the initial temperature for 10°C (50°F) for each time. The results were plotted as a function of the

material thermal inertia to yield Figure 3.

20

10

0

y = -0367)4 + 10

y=-0.525)1+10

♦ 1

n 2

A 3

X 4y =-O.G20x+9.51
10 X 5
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•	 ^ ^ ^ • 10
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m
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Figure 3 — Initial Object Temperature with Time to 10°C Skin Temperature

— Aluminum, Stainless Steel, and Nylon for 1, 2, 3, 4, 5, 10, 30, 60, and 600 seconds

Linear curve fits 7 to the interpolated data in Figure 3 yielded the recommended cold case values to be

used in equation 4. They are listed in Table 2. As for the hot case, 600 seconds is taken as infinite

contact time.

Table 2 — Cold Case Constants

contact

^ 

I a b
time (s)

1 -0.880 -12.29
2 -0.831 -6.10
3 -0.802 -2.93
4 -0.781 -0.86
5 -0.765 0.66

Where the intersection of the least squares fit was greater than 10°C, the value was set at 10°C and the fit was

performed again to yield the final slope. This step was taken to keep the results consistent with the physical limit

of a 10°C skin temperature.

8



10	 -0.712 4.78

30	 -0.620 9.51

60	 -0.525 10

-0.367 10

Conclusion

To prevent pain and ensure optimal task and system performance, it is important to properly define

temperature limits and verification methods for touching hot and cold objects. Previous limits for hot

objects have often lead to overly conservative designs or operational constraints, while cold limits have

been defined at potentially unsafe levels. The proposed limits and verification methods of the present

work are founded on a breadth of human research coupled with straightforward analytical methods

which are applicable for any material and contact duration. While there is some variability in human

perception of pain, these limits are conservative enough to prevent pain in most people during skin

contact, but not so conservative as to lead to overdesign or operational constraints. These limits pertain

primarily to intentional contact with the hands and fingers, as some parts of the body may be slightly

more sensitive to pain owing to their thinner epidermis. However, the hands and fingers are the most

likely parts of the body to be unprotected and used for grasping and manipulation of objects. If more

precise touch temperature limits are required for other areas of the body, additional testing and analysis

would be needed.
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